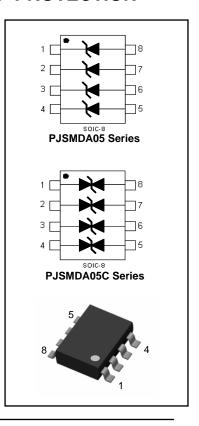


QUAD TVS/ZENER ARRAY FOR ESD AND LATCH-UP PROTECTION


This Quad TVS/Zener Array family have been designed to Protect Sensitive Equipment against ESD and to prevent Latch-Up events in CMOS circuitry operating at 5V, 12V, 15V and 24V for Unidirectional and Bi-directional protection options. This TVS array offers an integrated solution to protect up to 4 data lines where the board space is a premium.

SPECIFICATION FEATURES

- 350W Power Dissipation (8/20µs Waveform)
- Low Leakage Current, Maximum of 5µA at rated voltage
- Very Low Clamping Voltage
- IEC61000-4-2 ESD 20kV air, 15kV Contact Compliance
- Packaged in the Industry Standard SOIC-8
- Unidirectional and Bi-directional Protection Options
- 100% Tin Matte Finish (RoHS Compliant)

APPLICATIONS

- RS-232C or RS-422 Communication ports
- GPIB/IEEE 485 Ports
- Portable Instrumentation

MAXIMUM RATINGS (Per Device)

Rating	Symbol	Value	Units
Peak Pulse Power (8/20µs Waveform)	P _{pp}	350	W
ESD Voltage (HBM) Per MIL-STD-883C	V _{ESD}	>25	kV
Operating Temperature Range	TJ	-50 to +125	°C
Storage Temperature Range	T _{stg}	-50 to +150	°C

ELECTRICAL CHARACTERISTICS (Per Device) Tj = 25°C PJSMDA05, 05C

Parameter	Symbol	Conditions	Min	Typical	Max	Units
Reverse Stand-Off Voltage	V_{WRM}				5	V
Reverse Breakdown Voltage	V_{BR}	I _{BR} = 1mA	6			V
Reverse Leakage Current	I _R	V _R =5V			5	μΑ
Clamping Voltage (8/20µs)	V _c	1 _{pp} = 5A			9.5	V
Clamping Voltage (8/20µs)	V _c	I _{pp} = 24A			13	V
Off State Junction Capacitance*	Cj	0 Vdc Bias f = 1MHz			200	pF
Off State Junction Capacitance*	Cj	5 Vdc Bias f = 1MHz			110	pF

*Note: Off-state capacitance in the bi-directional version is half of the value shown for the unidirectional.

ELECTRICAL CHARACTERISTICS (Per Device) Tj = 25°C

PJSMDA12, 12C

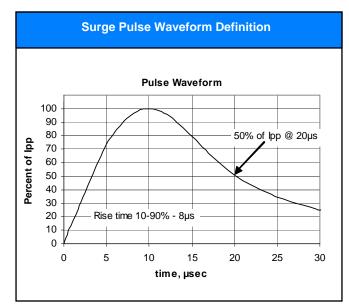
Parameter	Symbol	Conditions	Min	Typical	Max	Units
Reverse Stand-Off Voltage	V_{WRM}				12	V
Reverse Breakdown Voltage	V_{BR}	I _{BR} =1mA	13.3			V
Reverse Leakage Current	I _R	V _R =12V			5	μΑ
Clamping Voltage (8/20µs)	V _c	1 _{pp} =5A			17	V
Clamping Voltage (8/20µs)	V _c	I _{pp} = 15A			21	V
Off State Junction Capacitance*	Cj	0 Vdc Bias f = 1MHz			90	pF

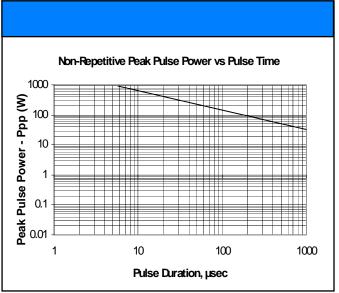
PJSMDA15, 15C

Parameter	Symbol	Conditions	Min	Typical	Max	Units
Reverse Stand-Off Voltage	V_{WRM}				15	V
Reverse Breakdown Voltage	V _{BR}	I _{BR} =1mA	16.7			V
Reverse Leakage Current	I _R	V _R = 15V			5	μΑ
Clamping Voltage (8/20µs)	V _c	I _{pp} = 5A			22	V
Clamping Voltage (8/20µs)	V _c	$I_{pp} = 12A$			27	V
Off State Junction Capacitance*	Cj	0 Vdc Bias f = 1MHz			70	pF

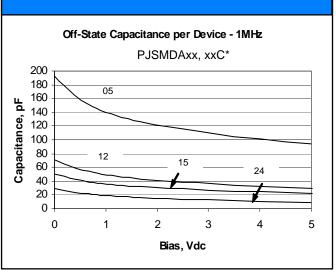
PJSMDA24, 24C

Parameter	Symbol	Conditions	Min	Typical	Max	Units
Reverse Stand-Off Voltage	V_{WRM}				24	V
Reverse Breakdown Voltage	V_{BR}	I _{BR} =1mA	26.7			V
Reverse Leakage Current	I _R	V _R = 24V			5	μΑ
Clamping Voltage (8/20µs)	Vc	1 _{pp} =5A			35	V
Clamping Voltage (8/20µs)	V _c	I _{pp} = 8A			40	V
Off State Junction Capacitance*	Cj	0 Vdc Bias f = 1MHz			50	pF

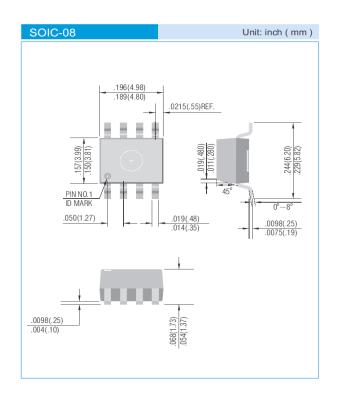

*Note: Off-state capacitance in the bi-directional version is half of the value shown for the unidirectional.

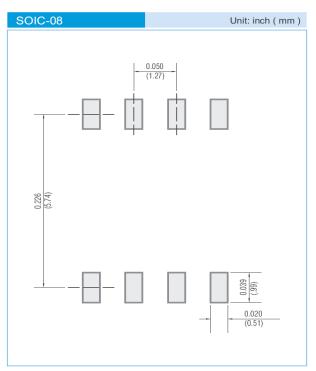


PJSMDA05, 05C SERIES



TYPICAL CHARACTERISTICS TJ = 25°C unless otherwise noted





*Note: Off-state capacitance in the bi-directional version is half of the value shown for the unidirectional.

PACKAGE AND LAYOUT DIMENSIONS

DEVICE MARKING INFORMATION

TVS	Marking Code
PJSMDA05	DA5
PJSMDA12	DA2
PJSMDA15	DAA
PJSMDA24	DA4
PJSMDA05C	DC5
PJSMDA12C	DC2
PJSMDA15C	DCC
PJSMDA24C	DC4

© Copyright PanJit International, Inc 2006

The information presented in this document is believed to be accurate and reliable. The specifications and information herein are subject to change without notice. Pan Jit makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. Pan Jit products are not authorized for use in life support devices or systems. Pan Jit does not convey any license under its patent rights or rights of others.